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Summary. The problem of finding eigenvalues and eigenstates of the general- 
ized perturbed eigenvalue equation (• + V)T = e(C + P)T is considered. 
The eigenvalues and the eigenstates of the unperturbed eigenvalue equation 
B~ = 2C~ are assumed to be known. Matrices B, V, C and P can be 
arbitrary, except for the requirement that C be nonsingular and that the 
eigenstates of the unperturbed equation be complete. It is shown that the 
eigenvalues and the eigenstates of the perturbed equation can be easily 
obtained if the rank of the generalized perturbation {V, •} is small. A special 
case of low rank perturbations are piecewise local perturbations which are 
common in physics and chemistry. If the perturbation is piecewise local with 
fixed localizability, the operation count for the derivation of a single eigen- 
value and/or a single eigenstate is d~(n). If the perturbation has a fixed rank, 
the operation count for the derivation of all eigenvalues and/or all eigenstates 
is (9(n 2). 

Key words: Generalized perturbed eigenvalue equation - -  Low rank pertur- 
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1. Introduction 

The solution of the generalized eigenvalue equation 

~ k  = ~k G~k, (1) 
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where A and 5 are n-order matrices, is one of the most important numerical 
problems in quantum chemistry. Typically, A represents the Hamiltonian, while 

is the overlap matrix defined over some set of basis functions. In many 
quantum chemical models these basis functions are assumed to be orthonormal- 
ized, and instead of the generalized eigenvalue equation (1) one solves a simple 
eigenvalue equation with 5 = ~. However, in the SCF ab initio and in the more 
sophisticated SCF semiempirical methods, one cannot neglect the overlap be- 
tween the basis functions. For example, the overlap between the 2p~ atomic 
orbitals situated on adjacent carbon atoms is ,,~ 0.25, which is not negligible. The 
standard approach is an explicit or implicit orthonormalization of the initial 
orbitals. However, this is not always practical, especially when interacting 
molecules are considered. The reason for the neglect of the overlap is mainly 
numerical, it is much easier to solve the eigenvalue equation (1) with ~ = ~. It is 
however more realistic to assume that the overlap matric S is not trivial. 

There are some other quantum chemical problems which may lead to the 
generalized eigenvalue equation (1), and also to the eigenvalue equation involv- 
ing non-Hermitian matrices. For example, the eigenvalue problems encountered 
in the study of molecular vibrational spectra involve two matrices, matrix B: and 
matrix G. The former matrix is associated with the force field, whereas the latter 
is associated with the kinetic energy. Depending on the implementation, the 
corresponding eigenvalue equation is either a generalized eigenvalue equation (1) 
with ~ = G - I ~  or ~ 0 : - 1 ~ ,  or it is an eigenvalue equation for the 
(generally non-Hermitian) matrix 0:G [1]. 

Many problems involving the solution of the eigenvalue equation are related 
to each other. If the solution to some system described by the matrix A is 
required, one usually already knows the solution to some related "unperturbed" 
system described by the matrix ~. A natural idea is to exploit this knowledge in 
order to speed up the calculation and decrease the operation count. Such an 
approach may also provide a direct insight into the connection between related 
systems. Such systems are most naturally treated by the perturbation expansion 
method. This method is usually applied to the simple eigenvalue equation (1) 
with ~ = ~, and it solves this equation exploiting the knowledge of the eigenval- 
ues and the eigenstates of the related unperturbed system. The matrix A is 
represented as a sum A = B + V, where matrix B describes the unperturbed 
system, whereas matrix V corresponds to the perturbation. 

We present here an alternative method for the solution of the perturbed 
eigenvalue equation. In order to include all possibilities, we consider the general- 
ized eigenvalue equation perturbed by the generafized perturbation 

(B + V)~k = ~k(C + P)7'k. (2) 

With the choice & = B + V and 5 = C + P this equation is equivalent to the 
generalized eigenvalue equation (1). The eigenvalues 2i and the corresponding 
orthonormalized eigenstates #i of the generalized "unperturbed" eigenvalue 
equation 

B~i = 2i C~i (3) 
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are assumed to be known. For the sake of generality matrices B, C, V, and P are 
not assumed to be Hermitian. This necessitates careful distinction between the left 
and right eigenstates. 

Matrix V in (2) is the "perturbation" of the unperturbed matrix B, while 
matrix P is the "perturbation" of the unperturbed matrix C. Since matrices B and 
C usually correspond to the unperturbed Hamiltonian and to the unperturbed 
overlap matrix, respectively, matrices k/and P can be interpreted as perturbations 
of the Hamiltonian and overlap matrix, respectively. The perturbation {V, P} is 
"generalized", unless the perturbation of the "overlap" matrix C is trivial, i.e. 
unless P = 0. 

Many perturbations encountered in quantum chemistry are either "local" or 
"piecewise local". Such perturbations affect only a small portion of the total 
unperturbed system. For example, two molecules may differ in a single atom. One 
of these two molecules can be considered to describe the unperturbed system, and 
the "perturbation" corresponds to the replacement of one atom with another. This 
perturbation is nonzero only over a small portion of the unperturbed system, and 
hence it is local. Other examples of local perturbations are creation and 
destruction of a single bond, local interactions between two molecules, etc. A 
piecewise local perturbation is a more general perturbation which may be 
expressed in terms of a few local perturbations. Examples are the replacement of 
a few selected atoms, creation and destruction of a few selected bonds, etc. Unless 
the combined perturbation involves too many local perturbations, the region 
affected by the perturbation is still "small" with respect to the total region 
occupied by the unperturbed system. This property is essential for the perturba- 
tion to be considered "piecewise local". 

Standard perturbation methods are not well suited to treat piecewise local 
perturbations. The essential condition for the numerical efficiency of the perturba- 
tion expansion: a small perturbation and thus fast convergence, is usually not 
satisfied. Though the substitution of an atom with another is a local perturbation, 
it is not necessarily small. Similarly, creation or destruction of a single bond is by 
no means a small perturbation. 

The method to be presented is particularly suitable for the treatment of the 
generalized perturbed eigenvalue equation (2) with a generalized piecewise local 
perturbation {V, P}. More generally, this method can be efficiently applied to all 
perturbations {V, P} such that matrices k/and P have low rank. Piecewise local 
perturbations are a special case of a low rank perturbation (LRP). 

The LRP method produces the eigenvalue(s) and the eigenstate(s) of the 
generalized eigenvalue equation (2) in a finite and predictable number of steps. 
The method produces correct results for an arbitrary perturbation {V, P}. The 
requirement that the ranks of V and P be small is only a numerical one. Unless 
this requirement is satisfied, the operation count of the LRP method can be large, 
and some other method may be more efficient in the numerical solution of (2). 

If the perturbation is piecewise local (with arbitrary but fixed localizability), 
then the operation count needed to derive a single eigenvalue e0 of (2) is (9(n). If 
the eigenvalue e0 is known, the operation count needed to derive the corresponding 
eigenstate(s) is also (_9(n). If the perturbation is not piecewise local but has a 
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low fixed rank, then the operation count needed to derive all eigenvalues of (2) 
is •(n2). If these eigenvalues are known, the operation count needed to derive all 
the corresponding eigenstates is also (9(n2). For large n these operation counts are 
significantly lower than the corresponding operation counts of any other method 
for the solution of a generalized eigenvalue equation (2). 

The method presented here was originally applied to the Hermitian eigenvalue 
equation (2) with C = 4 and P = 0 [2]. In computer calculations performed on a 
PC computer in double precision [2], the eigenvalues and eigenstates obtained were 
found to be correct up to ,~ 14 significant figures. The times needed to derivethese 
eigenstates and eigenvalues were also in agreement with the predicted operation 
counts, and in particular with the predicted dependence on n [2]. 

It should be noted that a formula equivalent to ( l la) ,  but restricted to the 
nongeneralized Hermitian eigenvalue equation (C = 4, P = 0, B y = •, V t = V 
where t denotes complex conjugate transpose), with the additional restriction that 
I u~ ) = I v~ ) are the eigenstates while w~ are the corresponding nonvanishing eigen- 
values of V (these quantities enter the definition (12a) of functions S~p(e) and the 
relation (1 la)), has been apparently stated for the first time by Beattie and Fox 
[3] and independently by Arbenz and Golub [4]. Subject to the same restrictions, 
a formula equivalent to (14a) has been derived by Arbenz and Golub [4]. The 
equations derived by these authors relate the number of the positive eigenvalues 
of the unperturbed Hermitian matrix B with the number of the positive eigenvalues 
of the perturbed Hermitian matrix (B + V) [4]. Simpson derived a similar formula 
involving the number of positive eigenvalues, but for an even more restricted 
eigenvalue problem [5]. His formula was used for the frequency analysis of 
mechanical structures [6, 7]. 

These earlier approaches are different from the approach presented here. They 
use either some generalization of the Weinstein-Aronszajn determinant known 
from the methods of intermediate problems [8, 9], or more recently from Sylvester's 
law of inertia [10, 11]. Arbenz and Golub [4], for example, obtained their results 
using Silvester's law. Since this law applies only to symmetric matrices [10, 11], 
it is unlikely that their approach can be generalized to arbitrary non-Hermitian 
matrices. The generalization to the generalized eigenvalue equation (C ~ 4) and 
to the generalized perturbations (P ~ 0) is also not obvious. It should be noted 
however that these authors did generalize their results to some special non-Her- 
mitian matrices [4]. They considered the modified unitary eigenvalue problem 
UtB~  = ~ ,  where B is a unitary matrix with known spectral decomposition, U 
is a unitary matrix such that 4 - U has low rank. By means of the Cayley transform 
[12] they transformed this unitary eigenvalue problem to the Hermitian one [4]. 

The method presented here applies to a much wider class of eigenvalue 
problems. Firstly, it is complete since it treats explicitly eigenvalues as well as 
eigenstates. Secondly, it applies to the generalized eigenvalue equation with C ~ 4. 
Thirdly it allows for generalized perturbations with P ~ 0. Finally, it is generalized 
to non-Hermitian matrices, which are of interest in the study of molecular 
vibrational spectra and also in many applications outside the realm of quantum 
chemistry. The only restriction to complete generality is the requirement that matrix 
C be non-singular and matric C 1/2BC-i/2 non-defective. 
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2. The method 

We consider a generalized perturbed eigenvalue equation with arbitrary matrices 
V and P, an arbitrary non-singular matrix C, and a matrix B subject to a mild 
condition to be shortly stated. If needed, all the results thus obtained can be 
easily specified for Hermitian matrices. 

In the case of arbitrary matrices one has be distinguish between left and right 
eigenstates. Accordingly, the unperturbed eigenvalue equation (3) is replaced 
with 

(4) 

where 2, are the eigenvalues, while IO~) and (O~l are the corresponding right 
and left eigenstates, respectively. Note that right and left eigcnvalues are the 
samc, whereas right and left cigenstates may differ [13]. Wc assume that the 
eigenstates IO~} and (O~l are complete, and that they satisfy the generalized 
biorthonormalizcd relation 

Icl, f> = 6 .  (5) 

We also assume that these eigenstates and the corresponding eigenvalues ~.i are 
known. 

The assumption that left and right eigenstates of (4) are complete and that 
they can be chosen to satisfy (5) can be stated in different ways. This assumption 
is equivalent to the requirement that the matrix C be non-singular and the matrix 
C-1/2BC -1/2 non-defective (see Appendix). In particular, if matrix B is Hermi- 
tian and if C is the overlap matrix defined over linearly independent basic 
functions, this assumption is satisfied. This assumption is the only condition 
imposed on the otherwise arbitrary matrices B, V, C and P. 

By analogy with (4), the generalized eigenvalue equation (2) is replaced with 

(B + V)ITS) = ek(C + P) [ T~) ,  (6a) 

(~P~ 1(8 + V) = sk ( ~ '  l( C + P), (6b) 

where ~k are the eigenvalues, while ]~u~) and (T~] are the corresponding right 
and left eigenstates, respectively. 

Let Qv and Qp be the ranks of matrices V and P, respectively. Define the 
"rank" Q of the generalized perturbation {V, P} as the sum 

Q =Qv -k- Qp. (7) 

We now show that a special case of low rank perturbations (Q ,~ n) are piecewise 
local perturbations. 

Let the region ~v affected by the perturbation {V, P} be only a small fraction 
of the total region ~ occupied by the unperturbed system. Region ~v contains 
l ,~ n basic vectors, where I is by definition the "localizability" of the perturba- 
tion {V, P}. With an appropriate rearrangement of the rows and columns of V 
and P, these matrices have a single l x I block which contains all nonzero matrix 
elements. The diagonalization of ~/and P reduces to the diagonalization of these 
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l x 1 submatrices. Since the rank of  the square matrix equals the number of  
nonzero eigenvalues, the ranks Qv and Qp of matrices V and P satisfy Qv ~< l and 
Qp ~< I. Each piecewise local perturbation (l ~ n) is hence a low rank perturbation 
(Q ~ n). 

Matrices V and P can be written in the form 

v = ,:,.,slu,><v,l, P= T_., .,:,]x,><y,l, (8) 
s = l  s = l  

where ~o, # 0 and % # 0 are arbitrary scalars, while lu,) ,  (v,I, Ix+) and (Y,I are 
arbitrary vectors. There are many possible representations (8) of  the same 
perturbation {V, P}. For example, one can always rescale the vectors 
l us ), (vs l, I x~ ) and (y~ I in such a way that all o9, and z, equal unity. If  V is 
non-defective, the scalars a~, can be chosen to be eigenvalues of  V and the vectors 
lug) and < v, I can be chosen to be the corresponding right and left eigenstates, 
etc. 

Another useful representation of  the perturbation {V, •} is the representa- 
tion (8) satisfying m = l+ and (y,  I = (vs [ (s = 1 . . . . .  m) 

v--  ~ o,,lus><~+l, P= s +, Ix,><,+,, l, (9) 
s = l  s = l  

where I+o,I + I++1 ++0 (~--1,. . . ,  m). There is a similar representation with 
lu~>-- Ix~>. 

Each perturbation {V, P} can be represented in the form (9). If  the perturba- 
tion is piecewise local, representation (9) is particularly suitable for the applica- 
tion of  the LRP method. In this case the vectors (vs [ can be chosen to be unit 
row vectors and (9) reduces to 

v =  ~+ lu,><+l, P= ~+ Ix,><~l, (9a) 
s = l  s = l  

where l u, ) and txs ) are columns of  matrices V and P, respectively, while (s] are 
the corresponding unit row vectors. The summation is performed only over these 
unit vectors (s  I for which either the corresponding column vector ]us) or the 
corresponding column vector Ix,)  is nonzero. If  V and P are Hermitian, then 
m = I is the localizability of  the perturbation {V, P}. We refer to the representa- 
tion (9a) as a "column-wise" representation of the perturbation {V, P}. There is 
a similar row-wise representation of  {V, P}. 

If  the vectors [us > as well as the vectors (v, [ in (8) are linearly independent, 
then m = Qv is the rank of  V. Otherwise m > Qv. Similarly, if the vectors [xs > as 
well as the vectors <Ys[ are linearly independent, then # =Op is the rank of  P. 
Otherwise # > Qp. 

Any linear dependence between the vectors [u, >, [ v, >, Ix, > or [Ys > can easily 
be eliminated. For example, if the vectors l u, > are linearly dependent, then there 
exist nontrivial coefficients c, such that ~ ,  c, [us > = 0. Let the rth coefficient Cr be 
nonzero. Then V can be written in the form 

v =  s o++ lu+ ><v: l, (lOa) 
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where new vectors (vll are 

(1)tsl = (l')S I --  ( ( l)r/cr)(cs/OJs)(l ' )r  I. (10b) 

This reduces m by one. The elimination process can be continued until the 
remaining vectors l us ) are linearly independent. The same applies to other sets 
of linearly dependent vectors in the representation (8). Hence one can without 
loss of generality assume m = Qv and # = Qp, i.e. Q = (m + #). 

In a similar way m in the representation (9) can be reduced. Let Q0 be the 
smallest m which can be obtained with such a reduction. One easily finds Q0 ~< Q. 
We shall find the quantities Q and Q0 important in the estimation of  the operation 
counts for the derivation of the eigenvalues and the eigenstates of  (6). 

In the LRP approach it is convenient to distinguish "cardinal" and "singu- 
lar" eigenvalues and eigenstates. If  the eigenvalue e0 of  (6) differs from all the 
eigenvalues 2; of  the unperturbed eigenvalue equation (4), it is "cardinal" [2]. 
Otherwise, i.e. if eo ~ {2i } it is "singular". Each eigenstate T corresponding to the 
cardinal eigenvalue eo is cardinal, and each eigenstate ~ corresponding to the 
singular eigenvalue eo is singular [2]. 

In addition, singular eigenstates can be "normal" or "exotic". Let So = 2k 
be a singular eigenvalue of (6), and let ~ be the corresponding eigenstate. 
Further, let 2k be a v-degenerate eigenvalue of  the unperturbed eigenvalue 
equation (4), and let ] ~ R )  and ( ~ l  (x = 1 . . . . .  v) be the corresponding 
biorthonormalized right and left eigenstates, respectively. If  ~v is the right 
eigenstate of  (6) and it is a linear combination of  the right eigenstates I ~ )  
(~ = 1 , . . . ,  v) of (4), or if ~ is the left eigenstate of (6) and it is a linear 
combination of  the left eigenstates 1 ~ )  (~ = 1 , . . . , v )  of  (4), then it is 
"normal". Otherwise it is "exotic". 

We now formulate a few theorems which provide an efficient algorithm for 
the solution of  the generalized eigenvalue equation (6). In these theorems it is 
assumed that left and right eigenstates of the unperturbed eigenvalue equation 
(4) are complete and that they satisfy the generalized biorthonormalized relation 
(5). This restriction affects only matrices B and C, and apart from this restriction 
these matrices are arbitrary. The first two theorems refer to the perturbation 
{V, P} represented in the general form (8). 

Theorem 1 (cardinal eigenvalues and eigenstates). Let the perturbation {V, P} be 
represented in the form (8). 

Then (a) each nonzero cardinal eigenvalue ek of the generalized eigenvalue 
equation (6) is a solution of the equation 

_ - ,, s p(O 

I sf (O + = o, (11) 

where ~(e) is an (m + #)-order determinant and where the matrix elements of 
matrices S~(e), Sb(e), SV(e) and SO(e) are 

E i=l ~ - 2 i  , s ,p  = 1 , . . . , m ,  (12a) 
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i=l s - 2 ;  , s = l  . . . .  ,m, p = l  . . . .  ,/t, (12b) 

sc,(s) = E <Y,l* ,~><~flu,  > i=1 s--2i  , s = l  . . . . .  #, p = l  . . . . .  m, (12c) 

sIAs)-- T, <Y,l~:><~flx~ > 
i =1  s - 2 i  , s , p =  l . . . .  ,#.  (12d) 

Conversely, each root So r {2i } of  ~(e) is a cardinal eigenvalue of  the generalized 
eigenvalue equation (6). 

(b) Let So be a nonzero cardinal eigenvalue of  (6). Each right eigenstate ~R 
corresponding to this eigenvalue is o f  the form 

~R=i=I~-'. [(:~=1 ( ~ l u p ) C p + p = ,  ~ (~L[Xp)Dp) / (SO- -2 i ) I I~ iR) '  (13a) 

where 

Cp = cop(vpl~R), Dv = -s0rp (ypl~R). (13b) 

Moreover, the coefficients Cp (p = 1 . . . .  , m) and Dv (p  = 1 . . . .  , #) satisfy 

[S;(eo) -- f,,/co, lCp + 2 S~p(eo)Dv =0 ,  s = 1 , . . .  ,m, 
p = l  p = l  

scA~o)C,+ ~ Ls~Aso)+~,~/(~o~)lD,=o, s = l  . . . .  ,~. (13c) 
p = l  p = l  

Conversely, i f  So is a nonzero cardinal eigenvalue o f  (6), each state ~ R of  the form 
(13a) where the coefficients Cv and Dv are the (nontrivial) solution of  the linear set 
(13c) is the corresponding right eigenstate. Moreover, these coefficients satisfy 
(13b). 

Besides cardinal eigenvalues and eigenstates, one has to find singular eigen- 
values and eigenstates. This is provided by the following theorem. 

Theorem 2 (singular eigenvalues and eigenstates). Let the perturbation {V, P} be 
o f  the form (8), and let s o = 2k be a nonzero singular eigenvalue of(6). Further, let 

R 2k be a v-degenerate eigenvalue of  the unperturbed equation (4), and let ]~ k, ) and 
( q ~ [  (~ = 1 . . . . .  v) be the corresponding biorthonormalized right and left eigen- 
states, respectively. Then 

(a) The eigenvalue So is a solution o f  the equation 
I I ~ ~o <v, I~L > S,~ (~) - &,~/~o, , s ,p (s) , 
I I 

~ ~  s ~ ( s )  , s ~ ( e )  + a , , / ( s ~ , )  , <y, lOL> --o (14) 
I . . . . . . . . . .  / 

' < ~ L I x . >  ' o <~Llu,> , 

where ~o(~) is an (m + t~ + v)-order determinant and where the matrix elements o f  
matrices S"~ sb~ S~~ and sa~ are 
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i . k  g - 2  i , s ,p  = 1 , . . . , m ,  (15a) 

bO ~ (v~[~>(q~[Xp> . ,  (15b) S~p(e)-- , s - - 1 , . . . , m ,  p = l , . .  #, 
i # k  g - -  2 i  

i#k g -- 2i , S = 1 . . . . .  #, p = 1 . . . .  , m, (15C) 

i#k g --~i , s ,p = 1 , . . .  ,/*. (15d) 

Conversely, each root So e {2;} of ~~ is a singular eigenvalue of the generalized 
eigenvalue equation (6). 

(b) Each right eigenstate gjR corresponding to the singular eigenvalue So = 2k 
is of  the form 

+ (16a) 
~ = 1  

where 

Cp =O,)p<Vpl~['lR>, Dp = --eoZp<ypl~g>, E,, = <q~f,,lcl~R>. (16b) 

Moreover, the coefficients Cp (p = 1 , . . . , m ) ,  Dp (p = 1 , . . . , # )  and E, 
(z = 1 . . . . .  v) satisfy 

aO <v, leL>E, 0 s = l , . . .  [s,p(So) lCp + bo - -  S , p  (So) Dp + = , m ,  
p = l  p = l  x = l  

~.] cO # S~p(eO)Cp + E [S~(eo) +6~p/(eoZo)]D~ + ~ <y,I~R~>E. = 0, 
p = l  p = l  ~r 

s = 1 . . . . .  #, (16c) 

T_, 
p = l  p = l  

Conversely, i f  go = 2k is a nonzero singular eigenvalue of  (6), each state ~R of the 
form (16a) where the coefficients Cp, Dp and E~ are the (nontrivial) solution of the 
linear set (16c) is the corresponding singular eigenstate. Moreover, the coefficients 
Cp, Dp and E,,  satisf) (16b). 

The above theorems are proved in the Appendix. In the case of  the simple 
Hermitian eigenvalue equation (C = ~, P = 0, B* = 6, V* = V) the proof  is given 
in [2]. 

For the sake of  simplicity, in the above theorems only formulas for the 
derivation of  the right eigenstates of  (6) are given. Formulas for the derivation 
of  the left eigenstates are analogous. These formulas can be obtained from the 
corresponding formulas for the derivation of  the right eigenstates by the formal 
substitution (v,[ ~*~ [u~), <~f} ~ { ~ : )  and <~L[ ~ [~R>. 
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We have also explicitly excluded the point e = 0 where many of  the above 
expressions diverge. However, if one takes a proper limit e ~ 0, these formulas 
apply to e = 0 as well. For  example, in the limit e ~ 0 relation (11) reduces to 
[Sgp(0) - 6sp/cos [ = 0. Thus e = 0 is a cardinal eigenvalue of  (6) if and only if this 
relation is satisfied. Similarly all other relations can be specified for e = 0. 

One can reformulate the above expressions in such a way that the point e = 0 
is automatically included; however, this usually creates other problems. For  
example, (11) can be reformulated in the form 

a . . . . . . .  , Ssp (5) - 6sp /o~s 

~(e)  =-- I ~S~p(e) ' eSa, r(e) + asp/zs = O, (11') ,/ 
which includes e = 0 as well. The drawback of  this expression is that if e is known 
to be real (e.g., Hermitian matrices with positive definite C and C + P), then el/2 
is imaginary for negative e, which complicates the numerical application of  (11'). 
One can avoid this problem by yet another modification of  (11); however, the 
resulting expression turns out to be non-symmetric. The drawback is again 
numerical. If  all matrices are Hermitian and if matrices C and C + P are in 
addition positive definite, the symmetric expression has a substantially lower 
operation count. On balance, the expressions given in the theorems seem to be 
the best choice, and the point e = 0 can always be separately verified. 

If  the perturbation {V, P} is not generalized (P  = 0), matrices sb(e), SO(e), 
Sd(e), sbO(e), SC~ and sdO(e) vanish. Hence relations (11) and (14) simplify to 

=_ I s p(e) - 6,p l = 0, ( l l a )  
aO Ssp(*)-,Lplo~s ' ( v , l # L )  

D~ - ~ = 0. (14a) 
( * L l u p >  ' o I 

The relations for the corresponding eigenstates simplify accordingly. All the 
relations so obtained are formally the same as the previously derived relations [2] 
for the simple Hermitian eigenvalue equation (C = 4, P = 0, B* = B, V* = V). 
The only difference is that for Hermitian matrices the left and right eigenstates 
of  the unperturbed eigenvalue equation are the same. This simplifies expressions 
(12a) and (15a) for the LRP functions S~p(e) and a0 Ssp (e). In spite of  this formal 
similarity, formulas (1 la) and (14a), as well as the corresponding formulas for 
the eigenstates, are much more general. These formulas apply to an arbitrary 
perturbed eigenvalue equation (6) with the only restriction that P = 0. 

In the case of  the simple Hermitian eigenvalue equation 
(C = 4, P = 0, ~$* = B, V* = V), with the additional restriction that the perturba- 
tion V is represented symmetrically (lus) = [vs ), s = 1 . . . . .  m), formulas equiva- 
lent to ( l l a )  and (14a) were independently derived by Arbenz and Golub [4]. 
Their derivation is based on the use of  Silvester's law on inertia [11]. Their 
formulas are much less general than (1 la) and (14a) except in one respect. Given 
some value x, those formulas relate the number of  eigenvalues of  the perturbed 
matrix that are greater than x to the number of  eigenvalues of  the unperturbed 
matrix that are greater than x. From these formulas one can derive some useful 
inequalities for the bracketing of  the eigenvalues [4]. The inequalities thus 
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obtained generalize well-known inequalities usually proven by means of  the 
Courant -Weyl  principle [9, 14]. Since the eigenvalues of  (6) are generally 
complex, these inequalities cannot be generalized to apply to (6), at least not in 
their present form. 

The application of Theorems 1 and 2 is straightforward. Theorem 1 can be 
used to find cardinal eigenvalues and eigenstates, whereas Theorem 2 can be used 
to find singular eigenvalues and eigenstates (if any). 

In order to find cardinal eigenvalues one has to solve the characteristic 
equation ~(e) = 0. The function ~(~) is a (m + p)-order determinant, and it is 
analytic in 5. Unless there is some accidental cancellation of  terms [2], this 
determinant has a pole at each 2i, and nowhere else. The characteristic equation 
~(e) can be solved iteratively, and the corresponding operation count strongly 
depends on (m +/~). Since without loss of  generality one can assume m = ~v and 
# = Qp, this method of deriving cardinal eigenvalues is likely to be efficient if the 
rank Q of the perturbation {V, P} is small (Q ~ n). 

Once the root ~ = % of (6) is known, one finds the corresponding right 
eigenstate(s) using relations (13a) and (13c). Since the determinant D(~o) van- 
ishes, the homogeneous linear set (13c) of (m + #) equations in (m + #) un- 
knowns, C s and Ds, has at least one nontrivial solution. After the coefficients Cs 
and D~ are determined, one obtains the corresponding right eigenstate I~  n) by 
inserting these coefficients into (13a). Since, without loss of  generality, one can 
assume Q = m + #, the derivation of [~n )  should be efficient whenever Q ~ n. 

Theorems 1 and 2 are convenient if the perturbation {V, P} is represented in 
the general form (8). If  this perturbation is represented in the form (9), one can 
instead consider Theorems 3 and 4. 

Theorem 3 (cardinal eigenvalues and eigenstates). Let the perturbation {k/, P} be 
represented in the form (9). Then 

(a) Each cardinal eigenvalue ek of the generalized eigenvalue equation (6) is a 
solution of the equation 

~(~) = ]Ssp(e) - 6sp [= 0, (17a) 

where the function ~(e) is an m-order determinant and where the matrix elements 
of the matrix S(e) are 

= 

i=1 ~ - 2 i  , s , p = l  . . . . .  m. (17b) 

Conversely, each solution e0r of the LRP equation (17a) is a cardinal 
eigenvalue of the generalized eigenvalue equation (6). 

(b) Let So be a cardinal eigenvalue of (6). Each right eigenstate ]~n) 
corresponding to this eigenvalue is of the form 

[~/R) = i=1 ~ ~.p~=l (a~P(~lu')--e~176 (18a) 
where 

Cp = (Vp[~AR), p = 1 , . . .  ,m. (18b) 
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Moreover, the coefficients Cp satisfy 

~, [S,p(eo) - 6 j C p  = 0 ,  s = 1 . . . . .  m. (18c) 
p = l  

Conversely, if So is a cardinal eigenvalue of (6), each state ~R of the form (18a), 
where the coefficients Cp are the (nontrivial) solution of  the linear set (18c), is the 
corresponding eigenstate. Moreover, these coefficients satisfy (18b). 

Theorem 4 (singular eigenvalues and eigenstates). Let the perturbation {V, P} be 
of  the form (9), and let eo = 2k be a singular eigenvalue of  (6). Let further 2 k be a 
v-degenerate eigenvalue of the unperturbed eigenvalue equation (4), and let I #~, ) 
and (#k~l (x = 1 . . . .  , v) be the corresponding biorthonormalized right and left 
eigenstates, respectively. Then 

(a) The eigenvalue eo is a root of  the LRP equation 

I , <v, lCL) S..~ - -  : s p  i = 0 (19) 
~o@)_ %(r , ~  ~ ' o 

where ~~ is an (m + v)-order determinant and where 

So (e) = E s,p = 1 . . . . .  m. (20) 

Conversely, each root eo e {2i } of the LRP equation (19) is a singular eigenvalue of 
the generalized eigenvalue equation (6). 

(b) Each right eigenstate ~R of (6) which corresponds to the singular eigen- 
value So = 2k is of the form 

I R> = ,+.Z DE_, 

+ Y, O,,I,t,L>, (21a) 
u = l  

where 

Moreover, the coefficients Cp (p = 1 . . . . .  m) and D. (x = 1 . . . . .  v) satisfy 

+ s =  1 . . . . .  m ,  

p = 1 Z = 1 (21c) 

~. [COp(~,lup)-SoTp(*~,,lxp)lCp=O, ~ = 1  . . . . .  v 
p = l  

Conversely, i f  eo = 2k is a singular eigenvalue, each state 7 tR of the form (21a), 
where the coefficients Cp and Dp are the (nontrivial) solution of (21c), is the 
corresponding eigenstate. Moreover, the coefficients Cp and Dp satisfy (21b). 

Theorems 3 and 4 are analogous to Theorems 1 and 2, respectively. Note that 
without loss of  generality one can assume m = Qo ~< Q- 
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We now derive two lemmas which give some upper and lower bounds on the 
degeneracy of  cardinal and singular eigenvalue, respectively. These lemmas can 
sometimes help to find eigenvalues and eigenstates of  (6). Note first that if eo is 
cardinal, the homogeneous linear set (18c) has at least one nontrivial solution. 
However, this set can generally have ( >/1 nontrivial solutions. Relation (18a) 
thus yields ( eigenstates, one eigenstate for each nontrivial solution of (18c). All 
these eigenstates correspond to the same eigenvalue eo, and unless they are 
linearly dependent, eo is (-degenerate. Conversely, if e0 is cardinal and if it is 
(-degenerate, the system (18c) should have ( nontrivial solutions. However, this 
sytem can have at most m nontrivial solutions. Since without loss of generality 
one can assume m = C0, this proves 

Lemma 1. Each cardinal eigenvalue is at most Co-degenerate. 

This lemma gives an upper bound to the possible degeneracy of  the cardinal 
solutions. A similar lemma concerning the lower bound of  singular solutions can 
be derived. 

According to Theorem 4, a necessary and a sufficient condition for the 
eigenvalue 2 k of  the unperturbed system to coincide with some eigenvalue e o of 
the perturbed system is the vanishing of the determinant ~~ An equivalent 
requirement is that the set (21c) should have a nontrivial solution. 

Let m = C0, and assume farther Cp = 0 (p = 1 , . . . ,  Qv). This reduces rela- 
tions (21c) to ~ (v~ I~k R )D~ = 0 (s = 1 . . . . .  Co). This is a homogeneous linear 
set of  Co equations in v unknowns. If  v > C0, this set has at least ( v -  C0) 
nontrivial linearly independent solutions. Since all the C s are zero, the corre- 
sponding eigenstates T n are, according to (21a), normal singular. This proves 

Lemma 2. Let the eigenvalue 2k of the unperturbed system be v-degenerate. I f  
Co < v, then the perturbed system has at least (v - Co) normal singular eigenstates 
corresponding to the singular eigenvalue e o = 2k. 

Note that Co is by definition the smallest m which can be obtained in the 
representation (9) of  the perturbation {V, P}, and that C0 ~< Q = Qv + Qp- 

3. Numerical considerations 

It is relatively easy to determine any eigenvalue and eigenstate of  the general- 
ized eigenvalue equation (6) by the LRP method. An efficient algorithm for 
the solution of the nongeneralized Hermitian eigenvalue equation 
(C = 4, P = ~, W = B, V* = V) was described and implemented elsewhere [2]. 
Essentially the same algorithm can be applied to the generalized eigenvalue 
equation. 

Consider for example the derivation of  the cardinal eigenvalues of (6) using 
Theorem 1. Due to (10) one can without loss of generality assume m = Qv and 
# = Qp. Cardinal eigenvalues are roots of  (11), and this equation can be solved 
iteratively using as the initial value some approximate root of  ~(e). The iteration 
can be performed by the modified [2] Brent method [13]. This method combines 
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the sureness of bisection with the efficiency of inverse quadratic interpolation 
[13]. One first calculates 2Qn scalar products (vslq~),  (ysl~,~), (~,~lus> and 
(##[xs ) .  This requries 2Qln multiplications. If the perturbation {V, P} is 
piecewise local (I a n) this is (9(n). If the perturbation is global (l ~ n) and low 
rank (Q an) ,  this is (9(n2). This operation count is calculated only once, 
irrespective of how many eigenvalues ek are required. 

In the simple iterative approach [2] each iteration step requires the cal- 
culation of 0 2 LRP functions S~p(e), S~p(e), S~p(e) and Sdp(e), followed by 
the calculation of the determinant ~(e). First one forms n inverses (e - 2 i ) - 1  
(n divisions), and then one forms Qn products (~i tup)(e-2i)  -1 and 
( ~ i [ x p ) ( e -  2i) -1 (Qn multiplications). Finally one forms LRP functions. This 
last step requires n multiplications and ( n -  1) additions per function. The 
determinant ~(e) can be calculated, for example, by the Gaussian elimination 
method which requires ~ Q 3/3 operations [ 13]. Excluding additions, this sums to 
approximately [n(1 + Q + Q2) + Q3/3 ] operations per iteration. 

The iteration algorithm can be formulated in such a way that in the first 
iteration step one calculates the determinant ~(e) at two initial points, then each 
additional iteration requires the calculation of ~(e) at only one point [2]. Hence 
if 7 roots of ( l l )  are needed, and if on the average I iterations per root are 
performed, the total operation count is 

M1(7) ,~2nol+n(l+ 1)7(1 + 0  -~0 2) + ( I +  1)7e3/3. (22a) 

Considered as a function of n, and if all cardinal eigenvalues of (6) are required 
(7 ~ n), this is (9(n2). If only few eigenvalues are required (7 a n) and if in 
addition the perturbation {V, P} is piecewise local (l a n), this is O(n). 

The above iteration method can be improved [2]. The most time-consuming 
step is the calculation of 0 2 LRP functions (12). This step is repeated ( I +  1) 
times. The calculation of each of these functions is (9(n). The main idea behind 
the improved algorithm is to replace the exact (9(n) calculation of these functions 
with the approximate (9(1) calculation of these functions. If the eigenstates are 
real, this can be done in the following way. 

Let the eigenstate eo be bracketed in the interval P, or equivalently, let us be 
interested only in the eigenstates contained in P. Assume that the dimension of 
P approximately equals the average distance between the adjacent eigenvalues 2~ 
of the unperturbed system. Beside interval P, consider an interval R, which is a 
few times larger than P, and which completely includes P. Let R contain nR a n 
eigenvalues 2i. For big enough n, this can be usually satisfied. Express each LRP 
function (12) as a sum of two components: the "local" component which 
contains nR terms with 2e ~ R, and the "global" component which contains 
remaining (n - n R )  terms with 2; r R. Then expand the global component in a 
Taylor series around some point which is currently a best approximation of co, 
or around a midpoint of P, and truncate this expansion at d terms. 

The resulting functions are approximate LRP functions. The terms which are 
most sensitive to small changes in e are contained in the local components which 
are calculated exactly, whereas all the remaining terms are contained in global 
components which are approximated with the first d terms of the Taylor 
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expansion. Since P is by assumption a few times smaller than R, the Taylor 
expansion converges quickly. If the quantities nR and d are well chosen, approx- 
imate LRP functions are reliable. 

The calculation of the Taylor expansion coefficients is (9(n) per function, but 
this should be done only once. Once these coefficients are known, the calculation 
of approximate LRP functions for each particular value of e is (9(1). The solution 
of the LRP equation (11) is replaced with the solution of the approximate LRP 
equation, ~ ' ( e ) =  0. Each iterative step in the solution of the approximate 
equation requires only (9(1) operations per LRP function, which is negligible for 
big n. If the parameters nR and d are well chosen, the root e~ of the approximate 
determinant ~'(e) is a good approximation of the corresponding root eo of ~(e). 
In the case of simple Hermitian eigenvalue equations with random matrices 
and V and with matrix elements of V approximately of the same order of 
magnitude as the matrix elements of B, acceptable results were obtained with 
nR = 4 and d = 3 [2]. With this choice each root e~ of ~'(e) usually approximates 
the corresponding eigenvalue e0 to five or more significant figures [2]. 

If the above process is repeated with the root e~ being considered as a new 
initial approximation, a second set of approximate LRP functions is constructed, 
and a second approximate equation ~"(e) = 0 is iteratively solved. Since e~ is 
already very close to eo, the corresponding root ~ of ~"(e) is practically exact. 
If the calculation is performed on a PC computer in double precision, root e~ of 
~"(e) approximates the eigenvalue e0 up to ~ 15 significant figures [2]. This is the 
maximum number of significant figures which one can hope for in double 
precision on a PC. 

This improved algorithm "stabilizes" and lowers the operation count. Both 
advantages are due to the fact that the (9(n) calculation of LRP functions is 
performed only twice, and not ( I +  1) times as in the simple iteration. With 
appropriate modification, this algorithm can be also applied to the calculation of 
complex eigenvalues. 

The operation count for the derivation of ~/roots of ~(e) using this improved 
algorithm can be estimated to be [2] 

M'I(~I) ,~ 2nQl + 2mlQ[1 + Qd] + hlQ[nR + d + Q(nR - d )  + Q2/3], (22b) 

where the quantities d and nR determine how well the LRP functions are 
approximated. The larger these quantities, the better the approximation. As 
stated above, if the matrices are random, good results are obtained with d = 3 
and nR = 4. If the perturbation is unusually large, or if the eigenvalues '~t are 
distributed densely in the vicinity of e0, one should increase n,~, but not d. If only 
nR is increased, the two leading terms in (22b) are not affected. 

Comparison of (22b) and (22a) demonstrates the advantage of the (22b) 
algorithm. Consider for example the calculation of a single eigenvalue 0 / =  1), 
and assume that the perturbation is piecewise local (l ~ n). In both expressions 
the second term is (9(n), and this term substantially contributes to the operation 
count. In (22a) this term is very sensitive to the number of iterations I, which is 
a highly variable and unpredictable quantity. In (22b) the dependence on I is 
confined to the third term which is (9(1). In the limit of big n the operation count 
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for (22b) is stable, whereas the operation count for (22a) is not. Moreover, 
assuming conservatively I > 5 and using d = 3 [2], one finds in the big n limit 
Mi(r/) < MI (r/). The relative advantage of the operation count MI (r/) further 
increases with the increase of L 

If  the cardinal eigenvalue eo of (6) is known, the derivation of the correspond- 
ing eigenstate(s) is straightforward. One first solves (13c). This can be done by 
Gaussian elimination followed by backsubstitution, which requires approxiamtely 
Q3/3 + Q2/2 ~ Q3/3 operations [13]. If  the eigenvalue e0 has been obtained as the 
root of ~(e), the LRP functions S~p(eO), S~p(eO), S~p(e0) and Sdp(eO) are already 
known, and there is no overhead for their derivation. I f  this eigenvalue has been 
obtained in some other way, there is an initial overhead of g 2Qnl operations and 
an additional overhead of (1 + Q + Q2)n operations per eigenstate. 

Once (13c) is solved, one inserts the coefficients Cs and Ds in (13a). This 
requires ~(Q + 1)n operations. In order to derive r/eigenstates the total opera- 
tion count is 

M2(t/) ~ nrl( 0 + 1) + t/03/3, (23) 

if the corresponding eigenvalues were obtained by the LRP method and 

M3(r/) ~ 2nol + nn(2 + 20 + 02) + r/03/3, (24) 

if these eigenvalues have been obtained in some other way. Considered as a 
function of n, and if all the eigenstates are required (r /~ n), both operation 
counts are (9(n2). If  only a few eigenstates are required (7 ~ n), the operation 
count (23) is (9(n), whereas the operation count (24), is either (9(n) or (.O(n2), 
depending on whether or not the perturbation is piecewise local. 

Presently the most efficient method for the derivation of all eigenvalues or all 
eigenvalues and all eigenstates of a real symmetric matrix is a Householder 
tridiagonalization followed by the QL algorithm [ 13]. The operation count for 
the derivation of all eigenvalues of an n-order matrix by this method is [13] 

/'/1 (n) ~,~ 2n3 -t- 30n 2, (25) 

whereas the operation count for the derivation of all eigenvalues and all 
eigenstates is [ 13] 

H2(n ) ~ ~ n  3 + 30n 2. (26) 

Both operation counts are (9(n3), whereas the LRP operation counts are (9(n 2) 
for r /~  n. For each fixed rank 0 of the perturbation {V, P}, there is some critical 
n such that the LRP method is more efficient whenever this critical value is 
exceeded. The relative advantage of the LRP method further increases with the 
increase of n. If only a few eigenvalues or only a few eigenstates are required, the 
relative advantage of the LRP method is substantially greater, especially if the 
perturbation is peicewise local. 

The estimated LRP operation counts may decrease in some special cases. For 
example, if matrices B, C, V and P are Hermitian then [ ~ ) = [ ~ k  L)  
(k = 1 . . . . .  n). If  in addition C and C + P are positive definite, then the 
eigenvalues ek and 2; are real. Moreover, since V* = V and P* = P, one can 
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choose lus>=lvs> (s--1 . . . . .  m) and Ixs>=ly > ( s = l  . . . .  Hence for 
real e 

a c * d Ssp = (Sp,~)*, Sbp = (Sp,) , S~p = (Sd~) *. (27) 

Matrix II~(~)ll is thus Hermitian, and instead of Q2 distinct LRP functions one 
has to calculate only Q(Q + 1)/2 such functions. In addition, instead of 2Qn scalar 
products, one has to calculate only Qn scalar products (us[~i)  and (x~[~ i). All 
the operation counts accordingly decrease. 

The above estimates for the operation counts are based on Theorem 1, and 
they apply to the perturbation {V, P} represented in the general form (8). If this 
perturbation is represented column-wise as in (9), one can use Theorem 3 instead 
of Theorem 1. Without loss of generality one can assume m = Qo- The corre- 
sponding operation counts are analogous to the operation counts (22), (23) and 
(24). The most important difference is that rank Q = (0v + 0p) is replaced by Q0. 
This replaces a Q-order LRP determinant with a Qo-order LRP determinant. 
Since 0o ~< Q, the operation counts can be substantially decreased. Sometimes Qo 
can be as low as 0o g Q/2, which can decrease the operation counts up to 
fourfold. On the other hand, if relations (27) are satisfied, the relative perfor- 
mance of Theorem 1 improves, and the corresponding operation counts decrease 
approximately twofold. Which theorem produces a faster algorithm depends on 
a delicate trade off. 

Similar conclusions apply to the derivation of singular eigenstates, which can 
be derived either with Theorem 2 or with Theorem 4. 

4. Conclusion 

We have considered the derivation of the eigenvalues and eigenstates of the 
generalized perturbed eigenvalue equation (B + V)~' = e(C + p)~v, where the 
eigenvalues and the eigenstates of the related unperturbed eigenvalue equation 
B~ = 2C~ are known. The only restriction imposed on matrices B, C, V and P 
is that matrix C be nonsingular, and that the eigenstates of the unperturbed 
eigenvalue equation form a complete set. This later condition can be replaced 
with the condition that matrix C-1/2BC -1/2 be non-defective. These conditions 
are very mild, and the low rank perturbation (LRP) method applies to virtually 
arbitrary generalized eigenvalue equation with arbitrary generalized perturbation 
{v, p}. 

For each fixed rank Q = Qv + Qp of the perturbation {U, P}, the operation 
count for the derivation of all eigenvalues and all eigenstates scales as ~(na). If 
the perturbation {V, P} is piecewise local, the operation count for the derivation 
of a single eigenvalue and a single eigenstate scales as (.0(n). The LRP method is 
hence potentially very useful for the solution of generalized eigenvalue problems 
involving low rank perturbations. 

Besides the operation count, another important aspect of each numerical 
method is the stability of the method. In the case of Hermitian matrices the LRP 
method is stable and numerically reliable [2]. In the case of non-Hermitian 
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matrices this is not necessarily so. It is well known that the eigenvalue equations 
involving some non-Hermitian matrices are genuinely unstable, especially if the 
eigenstates are almost linearly dependent [13]. No numerical method can remedy 
a natural instability. At most one can hope for is that the LRP method does not 
introduce additional instabilities. Numerical experiments involving non-Hermi- 
tian matrices are in progress. 

The LRP method and the standard perturbation expansion method comple- 
ment each other. These methods address qualitatively different problems. In 
order for the perturbation expansion to be efficient, the perturbation should be 
small. In order for the LRP method to be efficient, the rank of the perturbation 
should be small. In addition, the perturbation expansion is a power series 
expansion which is not always guaranteed to converge, whereas the LRP method 
always produces correct eigenvalues and eigenstates, albeit sometimes (for large 
rank) with a large operation count. 

One potential application of the LRP method is the treatment of large 
molecular systems perturbed by local or piecewise local perturbations. For 
example, if a solution to some hydrocarbon system is known, the LRP method 
could be used to derive solutions for related heterocompounds. Depending on 
the particular model (Hiickel, PPP, ab initio, etc.), such an approach could be 
much faster than any presently known method. In a similar way the LRP method 
can be applied to numerical problems associated with breaking and forming of 
molecular bonds, local interactions between large molecules, local interactions 
between a single large molecule and small molecules or atoms, etc. In each 
particular case the feasibility of the LRP approach depends on the rank of the 
perturbation {V, P}. This rank should be "small" with respect to the dimension 
n of the problem considered. How small depends on whether all or only few 
eigenstates and eigenvalues are requried, and it can be estimated from the 
quantitative expressions for operation counts. 

Another potentially useful area of application is model testing. For example, 
in the Hiickel approach one associates with each heteroatom X a Coulomb 
integral ~x. One might ask how the change in the particular parameter ~x affects 
eigenvalues and eigenstates. This question can be answered using the standard 
perturbation approach. However, the perturbation method is inefficient if the 
change in Ctx is substantial, and besides it gives only an approximate result. 
Direct methods, such as the Householder, Givens or Jacobi methods, have 
operation counts of (9(n 3) [ 13]. The same is true for iterative methods, such as the 
power method or inverse iteration. The LRP method is fast (the rank of this 
perturbation is one), it is at most O(n2), and it produces exact eigenstates and 
eigenvalue. Similarly, H/ickel parameters flxy involving different pairs of atoms 
could be investigated, since the rank of the associated perturbation is again 
small, Q = 2. The same idea can be applied to more sophisticated semiempirical 
models, such as PPP. In this way one could use the LRP approach in order to 
find the "best" set of parameters for a given semiempirical model. 

The same idea can be applied to SCF ab initio models. The "parameters" in 
an ab initio model are fixed; however, the basis set of functions is not. In order 
to assess how reliable a given ab initio model is, it is important to know how 
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much the predictions of the model change with changes in the basis set. The 
inclusion of additional functions amounts to the improvement of the model, 
and in view of the enormous numerical complexity of the ab initio treatment of 
not so large molecules, it is not easy to find out what is the effect of the 
addition of a particular function to a basis set. This problem is suitable for the 
LRP method. In the SCF approach the inclusion of a single basis function is 
equivalent to a perturbation with two distinct components, a dominant rank- 
one component which can be attributed to the inclusion of the new function, 
and another much smaller component which is due to the SCF readjustment of 
the system. The dominant rank-one component can be treated with the LRP 
method, and the remaining small component can be efficiently treated with a 
standard perturbation method. Such a combination of the 'LRP and the stan- 
dard method could be very efficient in assessing the relative importance of 
various basis functions. 

As a final example consider molecular vibrational spectra. The correspond- 
ing eigenvalue equation involves two matrices, a force field matrix 0: which is 
related to force constants (stretching, bending, etc), and a matrix G which is 
related to the molecular kinetic energy. Replacement of a single atom, change 
in the value of a particular force constant, change in the mass of the particular 
atom (isotope effect) etc. are all examples of local perturbations. Hence all 
these perturbations can be efficiently treated with the LRP method. 

The relative efficiency of the LRP method is mainly due to the fact that this 
method replaces the solution of an n-order linear system with the solution of a 
Q- or Q0-order nonlinear system. Though nonlinear systems are more difficult to 
solve, the trade-off is numerically favorable whenever Q and Qo are sufficiently 
small with respect to n. 

5. Appendix 

We explicitly prove only Theorem 3. Except for much more involved notation, 
the proof of the other three theorems is analogous. 

Let the perturbation {V, P} be expressed in the form (9). Further let 
eo ~ {2i} be a cardinal eigenvalue of (6), and let t kUR) be the corresponding 
right eigenstate. Substituting (9) in (6a), taking the scalar product of (6a) with 
( ~ t  and using (4) one obtains 

p = l  

From the completeness of the unperturbed eigenstates I~ R } and from (5) one 
derives the identity 

(A2) 
i=1 

Since ~o~{2~}, one can divide (A1) by (Co-2,-). Multiplying the obtained 
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expression by (Vs[~R), summing over i and using (A2) one obtains 

[Ssr(eo) - 5sp] ( v ,  l I Y r )  = O, s = 1 . . . . .  m ,  (A3) 
p=l  

where the elements S,p(eo)  are given by (17b) with e = e 0. At least one of the 
coefficients (vpl ~R) (p = 1 . . . . .  m) in (A3) is nonzero. To see this, assume that 
all these coefficients are zero. Then (9) would imply V I ~,n} = p[ ~R> = 0 and 
hence from (6a) eo e {21}, contrary to the assumption that e0 is cardinal. In 
conclusion, relations (A3), considered as a set of m homogeneous linear equa- 
tions in m unknowns (vpl ~ r )  (p = 1 . . . . .  m), have a nontrivial solutions. 
However, a homogeneous linear system can have a nontrivial solution if and only 
if the determinant of the system vanishes. Hence eo satisfies (17a). Again dividing 
(A1) by (Co- 2i), multiplying by I~f  ) and using (A2) one derives (18a) where 
the coefficients Cp are given by (18b). This proves the first part of the above 
theorem namely that each cardinal eigenvalue eo of (6) is a root of the LRP 
equation (17a) and each corresponding right eigenstate ~n  is of the form (18a) 
where the coefficients Cp are given by (18b). 

Now let eo 6 {2i } be a root of the LRP equation (17a). This implies that a 
homogeneous linear system (18c) has at least one nontrivial solution {Cp}. 
Consider the state ~R given by (18a), where the Cp are the solutions of (18c). We 
will show that this state is nonzero and that it is a right eigenstate of (6). 
Multiplying (18a) by (v, I and rearranging one obtains 

S,,@o)Cp = <v.I er>.  (A4) 
p = l  

Since the Cp also satisfy (18c), this implies Cp = ( v , l ~ R ) .  Since the Cp are 
nontrivial, the state ~R is nonzero. 

One may now verify that ~ r  satisfies (6a) with the eigenvalue So. Multiplying 
(18a) by (e o - 2j) (#~  [C using (5) and rearranging, one finds 
( ~ I B  + V[ ~R) = s0 ( ~ I C  + p ieR) .  Since the ( ~rJ~] are complete, this proves 
that VR is the right eigenstate of (6) with the eigenvalue s0. 

N o t e .  The condition that the unperturbed eigenstates ] ~ f )  be complete, and 
that (5) be satisfied can be expressed in many different ways. Thus if C is 
non-singular, (4)is equivalent to B ' I X f ) =  2ilX~) and (X~IB' = 2i(x~l, where 
B' = C-1/2~C-1/2,  ]zR ) = CI/2I~ f ) and (X#[ = (~L[ C1/2" The completeness of 
[X~) implies the completeness of [ ~ f ) ,  and vice versa. By definition, B' is 
non-defective if the [ X ~ ) are complete [ 13]. However. left and right eigenstates of 
a non-defective matrix can be always biorthonormalized, ( Z f [ Z ~ ) =  fo [13]. 
This implies (5). Hence the condition of the above theorem can be satisfied 
whenever C is non-singular and 1 ~  ) are complete, or equivalently, whenever C 
is non-singular and B' is non-defective. 

The proofs of Theorems 1, 2 and 4 are analogous. In the case of Theorems 
2 and 4, the identity (A2) should be expressed in the form 

Z Y, (m5) 
i # k  u =  1 
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